Future Gamma-ray Missions for Multi-Messenger Astrophysics: BurstCube, AMEGO-X, and AMEGO

Judy Racusin (NASA GSFC)

On behalf of the BurstCube, AMEGO-X, and AMEGO Collaborations

Gamma-ray + MMA Science

- Gravitational Waves from Neutron Star Mergers + Gamma-ray Bursts
 - Explosion Energetics and Emission Mechanisms
 - Speed of Gravity, Lorentz Invariance and other fundamental physics constraints
 - Clues to Progenitor System Properties
 - Nuclear processes in nearby kilonovae
- Neutrinos + Gamma-rays
 - AGN Flares particle acceleration, emission mechanisms, jet composition
 - Nearby Supernovae element formation

Gamma-ray Observational Priorities for MMA

- Needed to detect MMA Counterparts
 - All-sky Exposure (instantaneous or close to it)
 - Broadband Sensitivity
 - Small Localizations/spatial resolution
- Bonus Capabilities
 - Energy resolution
 - Polarization
- Many technologies and platforms can realize this phase space, and GW & Neutrino upgrades guide EM capabilities
- Examples:
 - BurstCube 6U CubeSat
 - AMEGO-X MidEX Concept (for 2021 A0)
 - AMEGO Probe Concept

BurstCube: A CubeSat for Gravitational Waves Counterparts

- 6U CubeSat with the primary goal to detect, localize, and characterize short Gamma-ray Bursts (SGRBs)
- Complementary to existing gamma-ray transient detectors – adding sky coverage
- Instrument:
 - Four CsI(TI) scintillators coupled to arrays of silicon photomultipliers (SiPMs)
 - Energy range: ~50 keV 1 MeV
 - Field of View: 50% of the sky
- Rapid communications via TDRS
- Deliver BurstCube to launcher Jan 2022

PI: Jeremy Perkins (GSFC)

BurstCube Status

- Designs completed in mid-2020
- Instrument and Spacecraft under construction
- Developing Ground System infrastructure, hardware, calibrations, software, pipeline
- Instrument and science simulations
- Team includes undergrads, grad students, and postdocs with key roles

Pipelines Lead:

Joe Asercion (GSFC/ADNET)

Mollweide view

BurstCube Protoflight Detector Environmental Testing

Instrument Managers: Jacob Smith (UMBC/CRESST), Georgia DeNolfo (GSFC)

Ground System Lead: Judy Racusin (GSFC)

All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X)

- Compton + Pair telescope that will open a new window into the MeV sky
- Broad energy band: 300 keV − 1 GeV
- All-sky survey with 2.5 sr FoV
- Instrument:
 - Potential new silicon pixel tracker (see Isabella's talk next)
 - Csl Calorimeter
 - ACD
- Rapid detection and localization of transients
- Low inclination LEO orbit
- In development for 2021 MidEx AO

PI: Regina Caputo (GSFC)

All sky Medium Energy Gamma-ray Observatory (AMEGO)

PI: Julie McEnery (GSFC)

AMEGO opens huge discovery space!

AMEGO is a Multimessenger Observatory

Extreme Explosions – GW counterparts

- High rate of well localized (~<1 deg) GRB
 - •~100 short GRB/year
 - •~450 long GRB/year
- Polarization probe GRB jets
- Direct observation of gammarays from nuclear processes in nearby kilonova

Extreme Accelerators – VHE Neutrino counterparts

- Gamma-rays are generated in the same physical process that produces neutrinos
- Continuous monitoring of hundreds of the most luminous blazars
- MeV flux good proxy for neutrino flux
- Polarization observations probe jet composition

Element formation – MeV Neutrino counterparts

- Gamma-ray line flux as function of time provides good measure of geometry and total mass of Ni in SN1A
- AMEGO will detect SN1A out to 50 Mpc

For more information on AMEGO/AMEGO-X

- MeV Astronomy: Unlocking the multi-Messenger Universe (Splinter Session)
- C. Karwin talk 109.01, Detecting Cosmic Neutrino Counterparts with Next-Generation Gamma-Ray Telescopes
- H. Fleischhack iPoster 132.01, Simulating the instrument performance of the AMEGO mission
- C. Kierans talk 315.04, AMEGO: Exploring the Extreme Multimessenger Universe
- E. Orlando talk 439.01, Toward a Consistent Model of the Galactic Non-Thermal Interstellar Emission from MHz to TeV
- X. Wang talk 440.03, MeV Gamma Rays from Neutron Star Mergers: A Distinct Signature of r Process Fission
- A. Zoglauer iPoster 541.07, Enhancing the event reconstruction pipeline of future combined Compton-scattering and pair-creation telescopes with deep learning